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Generic attacks

A generic attack on hash functions  does not exploit 
any properties that the specific hash function might have.

H : {0,1}* ⟶ {0,1}n

128

✦ In the analysis of a generic attack, we view  as a random function in 
the sense that for each , the hash value  was defined 
by selecting .

✦ From a security point of view, a random function is an ideal hash 
function. However, random functions are not suitable for practical 
applications because they cannot be compactly described.

H
x ≤ {0,1}* y = H(x)

y ≤R {0,1}n
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Generic attack for finding preimages

✦ Attack: Given , repeatedly select arbitrary  until 
.

✦ Analysis: The expected number of hash operations is .

y ≤R {0,1}n x ≤ {0,1}*
H(x) = y

2n
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✦ This generic attack is infeasible if .

✦ Note: It has been proven that this generic attack for finding preimages is 
optimal, i.e., no faster generic attack exists. Of course, for a specific hash 
function, there might exist a faster preimage finding algorithm.

n → 128
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Generic attack for finding collisions

✦ Attack: Select arbitrary  and store  in a 
table sorted by first entry. Repeat until a collision is found.

✦ Analysis: By the birthday paradox, the expected number 
of hash operations is .

x ≤ {0,1}* (H(x), x)

π2n/2 ∈ 2n
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✦ This generic attack is infeasible if .

✦ Note: It has been proven that this generic attack for finding collisions is optimal, i.e., 
no faster generic attack exists.

✦ Expected space required: .

✦ Example: If , the expected running time is  (feasible), whereas the 
expected space required is  Tbytes (infeasible).

n → 256

π2n/2 ∈ 2n

n = 128 264

5 ′ 108
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VW parallel collision search

✦ VW: van Oorschot & Wiener (1993)

✦ Expected number of hash operations: .

✦ Expected space required: negligible.

✦ Easy to parallelize — -fold speedup with  processors.

✦ The VW collision-finding algorithm can easily be modified to find 
“meaningful” collisions. (See Optional Readings at cryptography101.ca.)

✦ Conclusion: If collision resistance is desired, then use an -bit hash 
function with .

∈ 2n

m m

n
n → 256
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Parallel collision search (VW method)

✦ Problem: Find a collision for .

✦ Assumption:  is a random function.

✦ Notation: Let .  
Define a sequence  by ,  for . 

Let  be the smallest index for which  for some ; such a  
must exist. Then  for all . By the birthday paradox, 

. In fact,  and .

✦ Now,  with overwhelming probability, in which event 
 is a collision for .

✦ Question: How to find  without using much storage?

H : {0,1}* ⟶ {0,1}n

H

N = 2n

{xi}i→0 x0 ≤R {0,1}n xi = H(xi≠1) i → 1
j xj = xi i < j j

xj+ℓ = xi+ℓ ℓ → 1
E[ j] ∈ πN/2 ∈ N E[i] ∈ 1

2 N E[ j ≠ i] ∈ 1
2 N

i − 0
(xi≠1, xj≠1) H

(xi≠1, xj≠1)
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Distinguished points

✦ Answer: Only store distinguished points.

✦ Distinguished points: Select an easily-testable 
distinguishing property for elements of , 
e.g. leading 32 bits are all 0.  
Let  be the proportion of elements of  that 
are distinguished.

✦ VW method: Compute the sequence  
and only store the points that are distinguished.

{0,1}n

θ {0,1}n

x0, x1, x2, x3, …
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VW collision finding
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VW collision finding

Stage 1: Detecting a collision

1. Select .

2. Store  in a sorted table.

3. .     (LP= last point stored)

4. For  do:

a. Compute 

b. If  is distinguished then

i. If  is already in the table, say  
where , then go to Stage 2.

ii. Store  in the table.

iii. .

x0 ≤R {0,1}n

(x0,0,≠)
LP □ x0

d = 1,2,3,…
xd = H(xd≠1) .

xd

xd xd = xb
b < d

(xd, d, LP)
LP □ xd
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Stage 2: Finding a collision

1. Set ,    .

2. Suppose , and set 
.

3. Compute 

4. For  do:

a) Compute .

5. Until .

6. The collision is .

ℓ1 □ b ≠ a ℓ2 □ d ≠ c

ℓ1 → ℓ2
k □ ℓ1 ≠ ℓ2

xa+1, xa+2, …, xa+k .
m = 1,2,3,…

(xa+k+m, xc+m)
xa+k+m = xc+m

(xa+k+m≠1, xc+m≠1)

xa

xb xd

xc

xa+1
xa+2

xa+k

x0

xa

xb

xc

xd



3. Hash functions Crypto 101:  
Building Blocks © Alfred Menezes

VW analysis

✦ Stage 1: Expected number of -evaluations is: 

                                          .

✦ Stage 2: Expected number of -evaluations is  (see optional readings).

✦ Overall expected running time: 

✦ Expected storage:  bits (each table entry has bitlength ).

H
πN/2 + 1

θ
∈ N + 1

θ

H ∙ 3
θ

N + 4
θ

.

∈ 3nθ N 3n
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✦ Example: Consider . Take . Then the expected run time 
of VW collision search is  -evaluations (feasible), and the expected 
storage is 192 Gbytes (negligible).

n = 128 θ = 1/232

264 H
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Parallelizing VW collision search
✦ Run independent copies of VW on each of  processors
✦ Report distinguished points to a central server.

m
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Analysis

✦ Expected time .

✦ Expected storage  bits.

∈ 1
m

N + 4
θ

∈ 3nθ N

 Notes

1. Factor-  speedup.

2. No communications between processors.

3. Occasional communications with the central server.

m

. . . . . .
1 2 m3 4


