V3c Generic attacks

HASH FUNCTIONS

CRYPTO 101: Building Blocks

©Alfred Menezes cryptography101.ca

Generic attacks

A generic attack on hash functions $H: \{0,1\}^* \longrightarrow \{0,1\}^n$ does not exploit any properties that the specific hash function might have.

- * In the analysis of a generic attack, we view H as a random function in the sense that for each $x \in \{0,1\}^*$, the hash value y = H(x) was defined by selecting $y \in_R \{0,1\}^n$.
- * From a security point of view, a random function is an ideal hash function. However, random functions are not suitable for practical applications because they cannot be compactly described.

Generic attack for finding preimages

- * **Attack**: Given $y \in_R \{0,1\}^n$, repeatedly select arbitrary $x \in \{0,1\}^*$ until H(x) = y.
- * Analysis: The expected number of hash operations is 2^n .

- * This generic attack is infeasible if $n \ge 128$.
- * Note: It has been proven that this generic attack for finding preimages is optimal, i.e., no faster generic attack exists. Of course, for a specific hash function, there might exist a faster preimage finding algorithm.

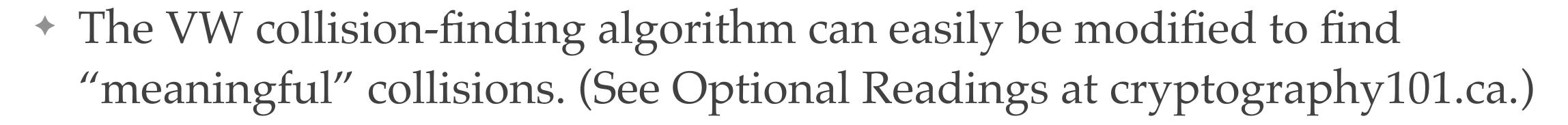
Generic attack for finding collisions

- * **Attack**: Select arbitrary $x \in \{0,1\}^*$ and store (H(x), x) in a table sorted by first entry. Repeat until a collision is found.
- **Analysis**: By the birthday paradox, the expected number of hash operations is $\sqrt{\pi 2^n/2} \approx \sqrt{2^n}$.

- * This generic attack is infeasible if $n \ge 256$.
- * Note: It has been proven that this generic attack for finding collisions is optimal, i.e., no faster generic attack exists.
- * Expected space required: $\sqrt{\pi 2^n/2} \approx \sqrt{2^n}$.
- **Example**: If n = 128, the expected running time is 2^{64} (feasible), whereas the expected space required is 5×10^8 Tbytes (infeasible).

VW parallel collision search

- * VW: van Oorschot & Wiener (1993)
- * Expected number of hash operations: $\approx \sqrt{2^n}$.
- * Expected space required: negligible.
- \star Easy to parallelize m-fold speedup with m processors.



Conclusion: If collision resistance is desired, then use an *n*-bit hash function with $n \ge 256$.

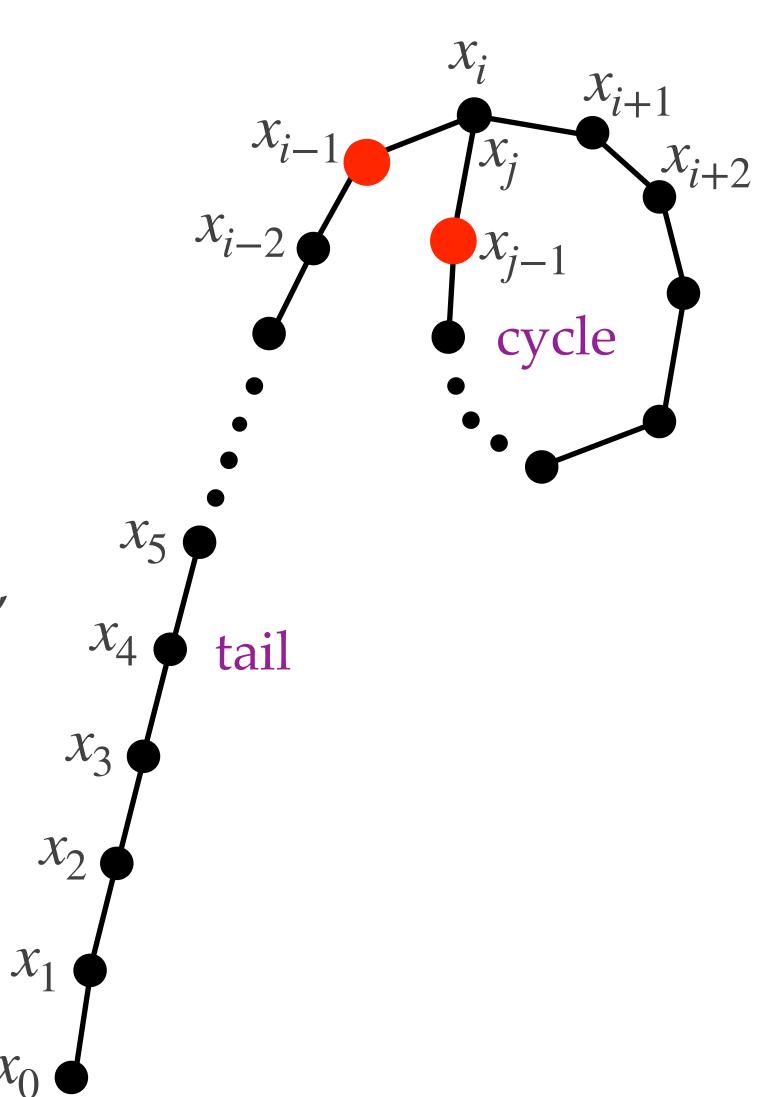
Parallel collision search (VW method)

- **◆ Problem**: Find a collision for $H: \{0,1\}^*$ → $\{0,1\}^n$.
- * **Assumption**: *H* is a random function.
- **Notation**: Let $N = 2^n$.

 Define a sequence $\{x_i\}_{i \ge 0}$ by $x_0 ∈_R \{0,1\}^n$, $x_i = H(x_{i-1})$ for $i \ge 1$.

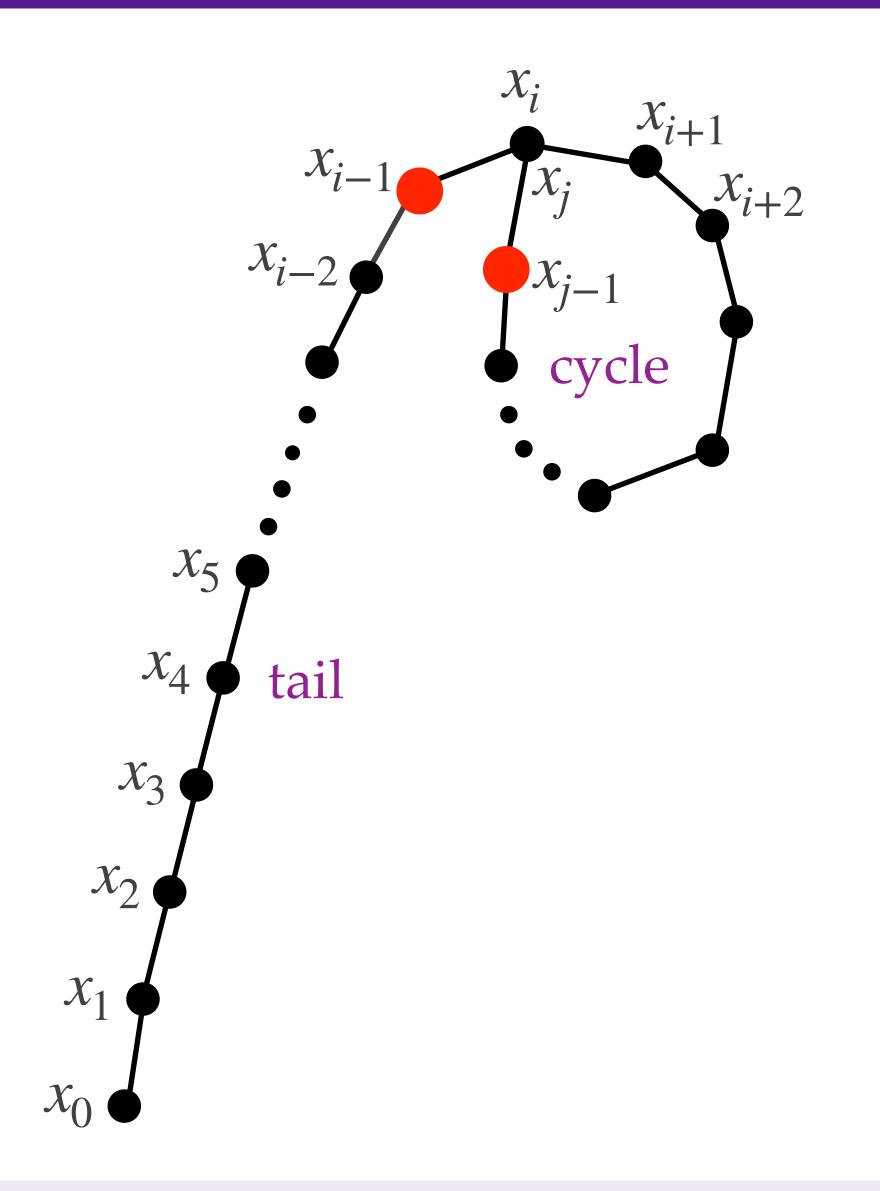
Let j be the smallest index for which $x_j = x_i$ for some i < j; such a j must exist. Then $x_{j+\ell} = x_{i+\ell}$ for all $\ell \ge 1$. By the birthday paradox, $E[j] \approx \sqrt{\pi N/2} \approx \sqrt{N}$. In fact, $E[i] \approx \frac{1}{2} \sqrt{N}$ and $E[j-i] \approx \frac{1}{2} \sqrt{N}$.

- * Now, $i \neq 0$ with overwhelming probability, in which event (x_{i-1}, x_{j-1}) is a collision for H.
- + **Question**: How to find (x_{i-1}, x_{j-1}) without using much storage?

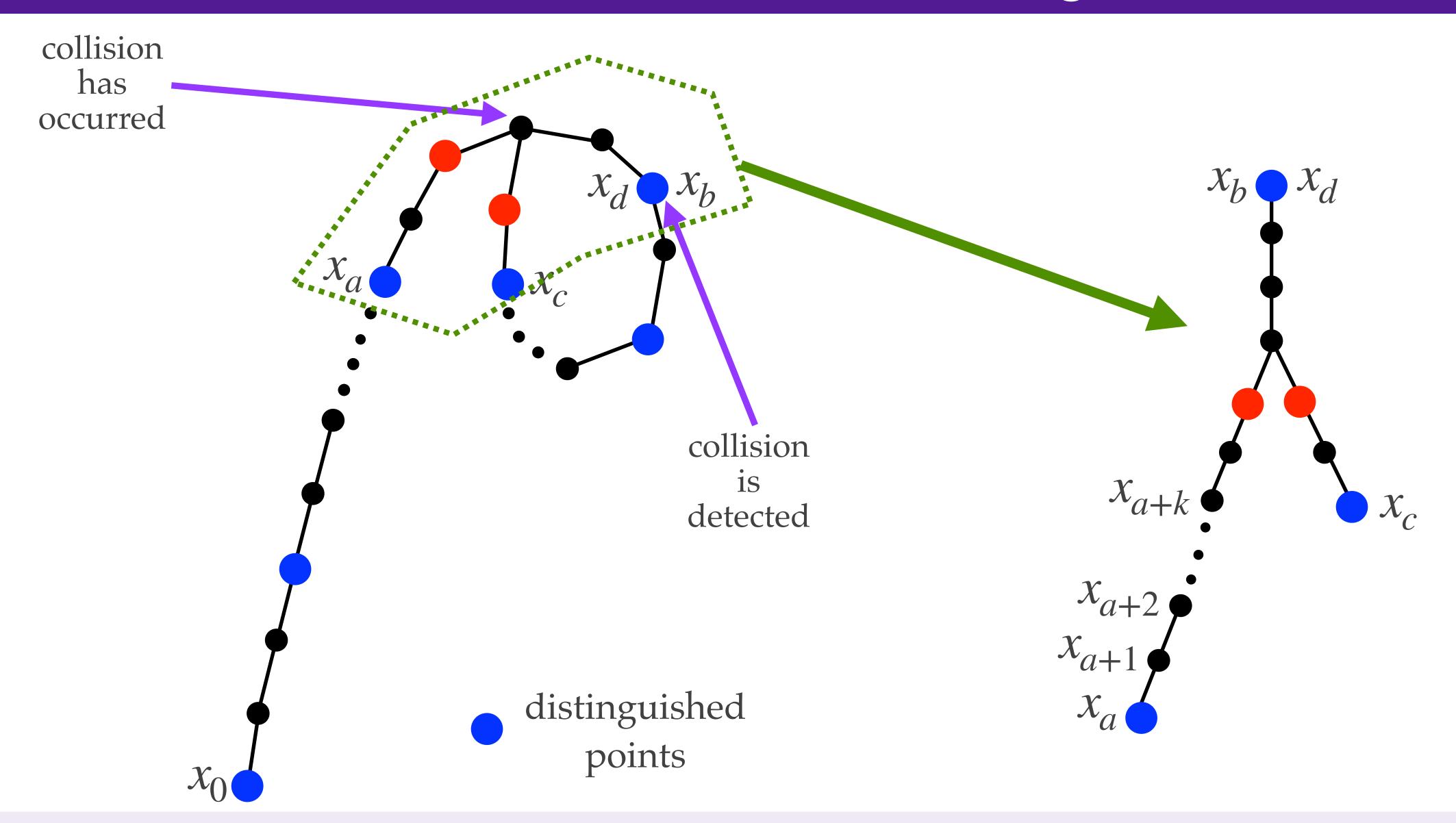


Distinguished points

- * Answer: Only store distinguished points.
- * Distinguished points: Select an easily-testable distinguishing property for elements of $\{0,1\}^n$, e.g. leading 32 bits are all 0. Let θ be the proportion of elements of $\{0,1\}^n$ that are distinguished.
- * VW method: Compute the sequence $x_0, x_1, x_2, x_3, ...$ and only store the points that are distinguished.



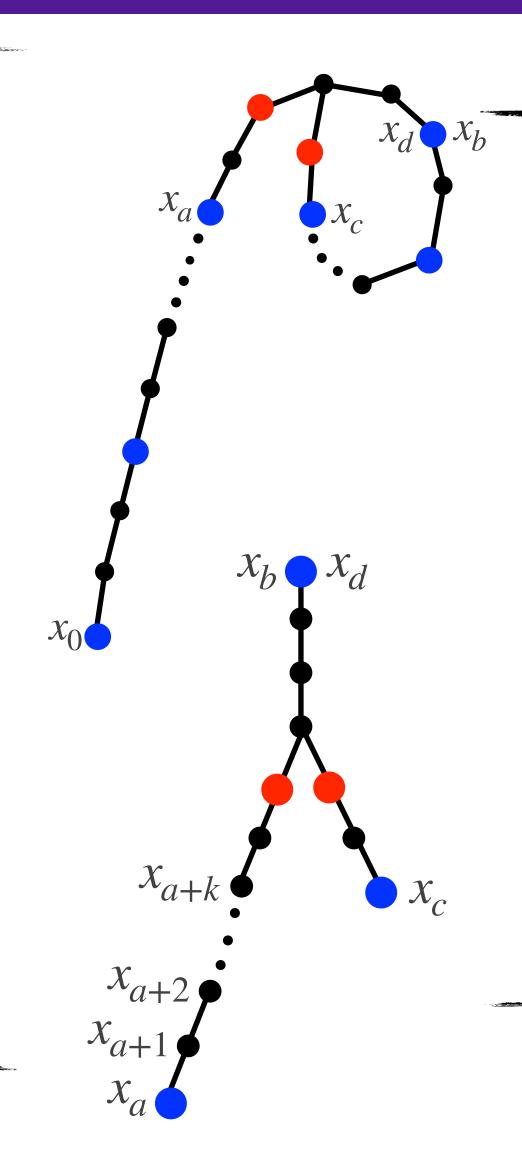
VW collision finding



VW collision finding

Stage 1: Detecting a collision

- 1. Select $x_0 \in_R \{0,1\}^n$.
- 2. Store $(x_0,0,-)$ in a sorted table.
- 3. LP $\leftarrow x_0$. (LP= last point stored)
- 4. For d = 1,2,3,... do:
 - a. Compute $x_d = H(x_{d-1})$.
 - b. If x_d is distinguished then
 - i. If x_d is already in the table, say $x_d = x_b$ where b < d, then go to Stage 2.
 - ii. Store (x_d, d, LP) in the table.
 - iii. LP $\leftarrow x_d$.



Stage 2: Finding a collision

- 1. Set $\ell_1 \leftarrow b a$, $\ell_2 \leftarrow d c$.
- 2. Suppose $\ell_1 \ge \ell_2$, and set $k \leftarrow \ell_1 \ell_2$.
- 3. Compute $x_{a+1}, x_{a+2}, ..., x_{a+k}$.
- 4. For m = 1,2,3,... do:
 - a) Compute (x_{a+k+m}, x_{c+m}) .
- 5. Until $x_{a+k+m} = x_{c+m}$.
- 6. The collision is $(x_{a+k+m-1}, x_{c+m-1})$.

VW analysis

Stage 1: Expected number of *H*-evaluations is:

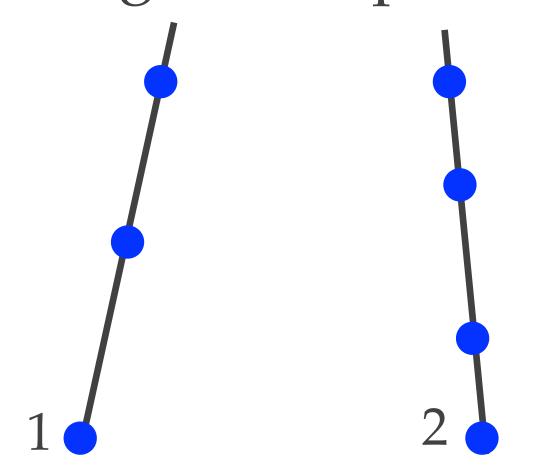
$$\sqrt{\pi N/2} + \frac{1}{\theta} \approx \sqrt{N} + \frac{1}{\theta}$$

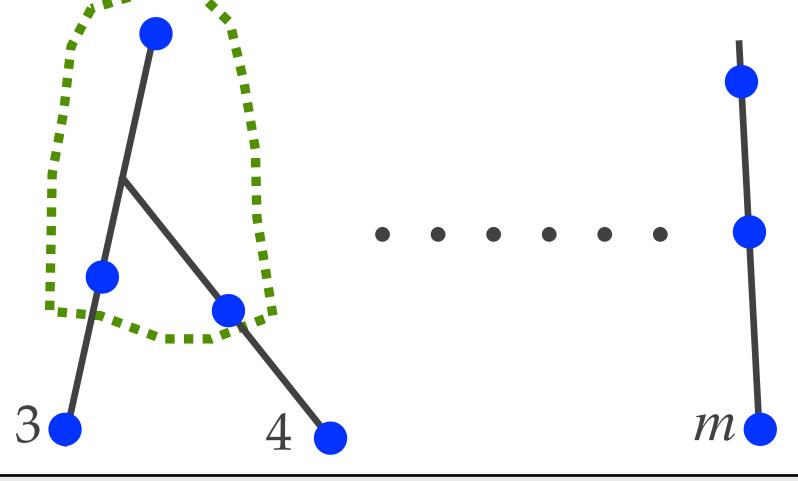
- ◆ <u>Stage 2</u>: Expected number of *H*-evaluations is $\leq \frac{3}{\theta}$ (see optional readings). ◆ <u>Overall expected running time</u>: $\sqrt{N} + \frac{4}{\theta}$.

 - Expected storage: $\approx 3n\theta\sqrt{N}$ bits (each table entry has bitlength 3n).
- **Example**: Consider n=128. Take $\theta=1/2^{32}$. Then the expected run time of VW collision search is 2^{64} H-evaluations (feasible), and the expected storage is 192 Gbytes (negligible).

Parallelizing VW collision search

- * Run independent copies of VW on each of *m* processors
- * Report distinguished points to a central server.





Analysis

- * Expected time $\approx \frac{1}{m} \sqrt{N} + \frac{4}{\theta}$.
- * Expected storage $\approx 3n\theta\sqrt{N}$ bits.

Notes

- 1. Factor-*m* speedup.
- 2. No communications between processors.
- 3. Occasional communications with the central server.